Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 111

Details

Autor(en) / Beteiligte
Titel
Increasing the number of modulated Fe single-atom sites by adjacent nanoparticles for efficient oxygen reduction with spin-state transition
Ist Teil von
  • Nano energy, 2023-12, Vol.117, p.108895, Article 108895
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2023
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Utilizing the nanoparticles (NPs) to improve the oxygen reduction reaction (ORR) performance of Fe single atoms (SAs) is conducive, but it is far from further application due to its limited number of enhanced SAs site and unclear origin of the enhanced electrocatalytic activity. Herein, we develop a hybrid catalyst contains a high density of activated SAs and explored the origin of this excellent activity. In the hybrid catalyst, the isolated Fe SAs are clustered within 2 nm around CFe2.5NPs ((CFe2.5)NP/FeSA-N-C), implying that these Fe SAs active sites are being modulated and enhanced. Further theory reveals those strong interactions between Fe SAs and adjacent CFe2.5 NPs induces transition of spin-polarization configuration of Fe centers from high spin state to low spin state, leading to weakened bonding strength of Fe atoms and OOH*. The optimized (CFe2.5)NP/FeSA-N-C possesses a superior ORR performance, and exhibits an amazing application potential in zinc-air batteries. [Display omitted] •We synthesize a novel hybrid catalyst containing a high density of Fe SAs activated by adjacent NPs.•Theoretical studies show that the CFe2.5 NPs can induce the rearrangement of Fe 3d electrons and spin polarization.•The hybrid catalyst shows exceptional ORR performance and promising application potential in zinc-air batteries.
Sprache
Englisch
Identifikatoren
ISSN: 2211-2855
DOI: 10.1016/j.nanoen.2023.108895
Titel-ID: cdi_crossref_primary_10_1016_j_nanoen_2023_108895

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX