Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 9

Details

Autor(en) / Beteiligte
Titel
Towards high-temperature electron-hole condensate phases in monolayer tetrels metal halides: Ultra-long excitonic lifetimes, phase diagram and exciton dynamics
Ist Teil von
  • Materials today physics, 2022-01, Vol.22, p.100604, Article 100604
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2022
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Excitons as composite bosons have been predicted to condense into Bose Einstein Condensation (BEC), Berezinskii-Kosterlitz-Thouless (BKT) superfluid or electron-hole liquid (EHL) states. However, short lifetime and small binding energy are the main obstacles that hinder the formation and observation of excitonic condensate at high temperature. Here we demonstrate excellent two-dimensional Tetrel Metal Halides (TMHs) platforms for excitonic quantum phase transition researches. We find that excitons in those monolayers possess effective masses similar to the free electron, promising large thermal de Broglie wavelengths. They can maintain stable bosonic characteristic at high temperature and concentration up to 1012 cm−2. The calculation on PbI2, PbBr2, PbCl2, SnI2, SnBr2, SnCl2 indicates BEC transition temperatures at 49 K, 103 K, 252 K, 36 K, 78 K, 152 K, comparable to the experimentally observed exciton BEC in MoSe2–WSe2 bilayer and 1 T-TiSe2 at 100 K and 190 K respectively. Besides, we confirm that the thermal equilibrium of excitonic subsystem can be established really fast, up to ∼10–100 fs. The excitons can live for ∼1–100 μs without direct radiation, beneficial for the formation and observation of condensate state. Our result paves the way not only for studies of quantum phase transition researches, but also for high-temperature excitonic devices. •Room-temperature stable excitons in monolayer TMH materials.•Optical properties of monolayer TMH materials including exciton effect.•Prediction of the BEC and superfluid phase transitions.•Analysis of the exciton dynamic processes in monolayer TMH materials.
Sprache
Englisch
Identifikatoren
ISSN: 2542-5293
eISSN: 2542-5293
DOI: 10.1016/j.mtphys.2022.100604
Titel-ID: cdi_crossref_primary_10_1016_j_mtphys_2022_100604

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX