Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 1793

Details

Autor(en) / Beteiligte
Titel
Atomic-scale identification of invisible cation vacancies at an oxide homointerface
Ist Teil von
  • Materials today physics, 2021-01, Vol.16, p.100302, Article 100302
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2021
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Cation vacancies play an important role in creating new functionalities in complex oxides. Directly identifying the cation vacancies at the atomic scale is thus key to addressing quantum phenomena related to acceptor states. Here, atomic-scale identification of invisible cation vacancies at an oxide interface via energy-dispersive X-ray spectroscopy (EDX) spectrum imaging is demonstrated. At the homointerface of SrTiO3 (STO) film and a Nb-doped SrTiO3 substrate, the veiled behavior of cation vacancies of Sr and Ti is revealed by the approach for the first time; they are found to reside on their sublattices within the first three or four unit cells of the film in the absence of oxygen vacancies. Theoretical calculations show that two-dimensional electron gas with three unit-cells at the Nb:STO/STO interface is formed by the charge transfer, which leads to the spontaneous formation of cation vacancies for charge compensation, and induces the lattice distortion as well. The results suggest that our EDX approach is useful for obtaining atomic-site-specific information on point defect chemistry with unparalleled precision, which facilitates a path towards atomically precise defect engineering. STEM-EDX chemical mapping can provide an atomic-level picture of what truly occurs with cation vacancies at an oxide interface. Cation vacancies of Sr and Ti in SrTiO3 film and Nb ions diffused from a Nb:SrTiO3 substrate are revealed to collaboratively participate in the formation of a nonstoichiometric interface layer for charge compensation, resulting in the tetragonal phase transition. [Display omitted] •Cation vacancies are atomically mapped out at an oxide homointerface by EDX analysis.•STEM-based EDX chemical mapping with a 1-Å-level drift stability is realized for achieving atomic-level characterization.•Defect-induced lattice distortion at the interface are measured with a pico-scale precision.•A nonstoichiometric interface layer containing cation vacancies in SrTiO3/Nb-doped SrTiO3 homostructure is unveiled.•Very low ion diffusion from the substrate is even revealed to work with cation vacancies to achieve charge balance.
Sprache
Englisch
Identifikatoren
ISSN: 2542-5293
eISSN: 2542-5293
DOI: 10.1016/j.mtphys.2020.100302
Titel-ID: cdi_crossref_primary_10_1016_j_mtphys_2020_100302

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX