Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 1

Details

Autor(en) / Beteiligte
Titel
Industrial wastewater volume reduction through osmotic concentration: Membrane module selection and process modeling
Ist Teil von
  • Journal of water process engineering, 2021-04, Vol.40, p.101760, Article 101760
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Osmotic concentration (OC), a form of forward osmosis (FO) but without draw solution recovery, can be applied for reducing wastewater disposal volumes in the oil & gas industry. Within this industry, wastewater is often disposed of by injection through disposal wells into deep underground reservoirs. By reducing wastewater disposal volumes, the sustainability of the disposal reservoir is improved. In this application of OC, seawater or brine from a desalination plant serves as the draw solution and the diluted seawater is discharged to the sea. This study compared 3 commercial hollow-fiber FO membranes (CTA, TFC, aquaporin proteins) for reducing the volume of low salinity wastewater generated during liquified natural gas (LNG) production. Additionally, a model was developed to predict the performance of commercial full-scale membranes by identifying optimum operating conditions, taking into consideration the trade-off between feed concentration factor and water flux. Bench-scale tests were conducted using synthetic and actual wastewater from an LNG facility to evaluate OC technology performance and validate model predictions. Based on model results with a feed mimicking the salinity of actual wastewater, a 4x concentration factor produced a reasonable compromise between feed recovery and draw solution dilution and was considered the optimum for future tests. At higher concentration factors, the increased dilution of the draw solution negatively impacted flux. In bench tests with real wastewater, the TFC chemistry had a ≈5x higher water flux (9.7 vs. 1.9 L/m2-h) and a ≈3x lower specific reverse solute flux (192 vs. 551 mg/L) compared to the CTA chemistry. However, both membranes showed less than 5% fouling and a specific forward organic solute flux of less than 0.5 mg/L of total organic carbon (TOC). Pilot testing for >50 h showed stable performance, comparable to bench scale data and model predictions.
Sprache
Englisch
Identifikatoren
ISSN: 2214-7144
eISSN: 2214-7144
DOI: 10.1016/j.jwpe.2020.101760
Titel-ID: cdi_crossref_primary_10_1016_j_jwpe_2020_101760

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX