Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 14

Details

Autor(en) / Beteiligte
Titel
Predictive modeling of total Hg background concentration in soils of the Amazon Rainforest biome with support of proximal sensors and auxiliary variables
Ist Teil von
  • Journal of South American earth sciences, 2023-09, Vol.129, p.104510, Article 104510
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2023
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Mercury (Hg) is a very well-recognized potential pollutant worldwide, and in the Amazon biome illegal artisanal gold mining practices tend to maximize this environmental problem. Considering the large extent of this biome and the evidences of Hg contamination, the main objective of this work was to predict the total Hg background concentration in Amazon soils using proximal sensors with aid of Random Forest (RF) and Support Vector Machine (SVM) algorithms, taking the total Hg content by direct analyzer as a reference. Soil texture, fertility properties and terrain attributes (elevation and slope) were considered as auxiliary variables in the modeling process. For that, nine contrasting sites of the Amazon rainforest biome were selected. In each site, eight locations (30 m apart) were carefully selected to collect composite soil samples at three depths: 0–20 cm, 20–40 cm, and 40–60 cm, totaling 216 soil samples. The pXRF data were separated into calibration (70%) and validation (30%) datasets for validation purposes. Total Hg in the studied soils ranged from 21.5 to 208 μg kg−1. RF models had better performance than SVM ones in Hg content prediction, showing the highest R2 and lowest RMSE values. Clay fraction content, total Al2O3, low degree of crystallinity Al forms, and stable elements (Nb, Zr, and Ti) positively correlated with total Hg. The combination of pXRF + magnetic susceptibility + soil texture data provided the best prediction models, however, pXRF data alone successfully predicted total Hg with R2 of 0.83. Saving time and cost and non-generating chemical effluents in prediction of total Hg background concentration in Amazon soils may be performed, constituting a secure basis for environmental regulation. [Display omitted] •PXRF data alone successfully predicted Hg background concentration in Amazon soils.•Total Hg was correlated to clay content, Al2O3, and low crystallinity degree Al forms.•Stable elements (Nb, Zr, and Ti) were also associated with total Hg.•PXRF may be used for delineation of Hg pollution risky areas in the Amazon soils.
Sprache
Englisch
Identifikatoren
ISSN: 0895-9811
eISSN: 1873-0647
DOI: 10.1016/j.jsames.2023.104510
Titel-ID: cdi_crossref_primary_10_1016_j_jsames_2023_104510

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX