Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 265
Journal of pure and applied algebra, 2020-05, Vol.224 (5), p.106223, Article 106223
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Universal deformation rings of finitely generated Gorenstein-projective modules over finite dimensional algebras
Ist Teil von
  • Journal of pure and applied algebra, 2020-05, Vol.224 (5), p.106223, Article 106223
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2020
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • Let k be a field of arbitrary characteristic, let Λ be a finite dimensional k-algebra, and let V be a finitely generated Λ-module. F. M. Bleher and the third author previously proved that V has a well-defined versal deformation ring R(Λ,V). If the stable endomorphism ring of V is isomorphic to k, they also proved under the additional assumption that Λ is self-injective that R(Λ,V) is universal. In this paper, we prove instead that if Λ is arbitrary but V is Gorenstein-projective then R(Λ,V) is also universal when the stable endomorphism ring of V is isomorphic to k. Moreover, we show that singular equivalences of Morita type (as introduced by X. W. Chen and L. G. Sun) preserve the isomorphism classes of versal deformation rings of finitely generated Gorenstein-projective modules over Gorenstein algebras. We also provide examples. In particular, if Λ is a monomial algebra in which there is no overlap (as introduced by X. W. Chen, D. Shen and G. Zhou) we prove that every finitely generated indecomposable Gorenstein-projective Λ-module has a universal deformation ring that is isomorphic to either k or to k〚t〛/(t2).
Sprache
Englisch
Identifikatoren
ISSN: 0022-4049
eISSN: 1873-1376
DOI: 10.1016/j.jpaa.2019.106223
Titel-ID: cdi_crossref_primary_10_1016_j_jpaa_2019_106223

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX