Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 10
Journal of multivariate analysis, 2023-07, Vol.196, p.105175, Article 105175
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Semiparametric penalized quadratic inference functions for longitudinal data in ultra-high dimensions
Ist Teil von
  • Journal of multivariate analysis, 2023-07, Vol.196, p.105175, Article 105175
Ort / Verlag
Elsevier Inc
Erscheinungsjahr
2023
Quelle
Access via ScienceDirect (Elsevier)
Beschreibungen/Notizen
  • In many biomedical and health studies, multivariate data arise from repeated measurements on a sample of subjects over time. In order to analyze such longitudinal data, we need to consider the correlations from the same subject, and it is inappropriate to use a simple multivariate model assuming independence structure. Motivated by a large scale longitudinal public health study that requires longitudinal data analysis with correlated multivariate discrete responses from repeated measurements and very high dimensional covariates, we adopt a flexible semiparametric approach for simultaneous variable selection and estimation without the requirement of specifying the full likelihood. Specifically, we propose generalized partially linear single-index models using penalized quadratic inference functions for longitudinal data in ultra-high dimensions. A key feature is that we allow the number of single-index covariates in the nonparametric term to diverge and even to be in ultra-high dimensions. The penalized quadratic inference functions easily incorporate within-subject correlation and pursue efficient estimation, and the single-index models can incorporate nonlinearity and some interactions while avoiding the curse of dimensionality. In this challenging setting, we contribute both an efficient algorithm and new asymptotic theory for our proposed approach for diverging and even ultra-dimensional covariates and a multivariate correlated response in longitudinal data. We apply our method to investigate diabetes status within a continuing longitudinal public health study with very high-dimensional genetic variables and phenotype variables.
Sprache
Englisch
Identifikatoren
ISSN: 0047-259X
eISSN: 1095-7243
DOI: 10.1016/j.jmva.2023.105175
Titel-ID: cdi_crossref_primary_10_1016_j_jmva_2023_105175

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX