Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 316

Details

Autor(en) / Beteiligte
Titel
Development of the Hydrus-1D freezing module and its application in simulating the coupled movement of water, vapor, and heat
Ist Teil von
  • Journal of hydrology (Amsterdam), 2021-07, Vol.598, p.126250, Article 126250
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2021
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • [Display omitted] •A model simulating coupled water and heat flow under freeze-thaw periods is developed.•A method based on the available energy theory is adopted to avoid instabilities.•The proposed model performs well with the data collected at three freezing sites.•Vapor flow dominates moisture transfer in the frozen layer and promotes ice formation. In cold regions, freeze-thaw cycles play a critical role in many engineering and agricultural applications and cause soil water flow and heat transport studies to be much more complicated due to phase changes involved. A fully coupled numerical module for simulating the simultaneous movement of water, vapor, and heat during freezing-thawing periods was developed and incorporated in the Hydrus-1D software in this study. To avoid numerical instabilities caused by a sudden increase in the apparent heat capacity during a phase change, a new approach based on the available energy concept was adopted to adjust soil temperature when the freezing temperature is reached. The proposed freezing module's performance was then validated using experimental data collected at three field sites with typical seasonal freezing/thawing processes. Results showed that the model could efficiently obtain a convergent solution and that simulated soil moisture and temperature variations captured the observed data well. Driven by soil matric potential and temperature gradients, both liquid water and water vapor flowed towards the freezing front. The isothermal liquid flux was the most significant component of overall flow in most soil depths except in the frozen layer, where it decreased by 1–5 orders of magnitude from values before freezing. Instead, the thermal vapor flux was the dominant moisture transfer mechanism in the frozen layer and contributed about 10% to the ice formation. These results indicate that the model, which considers the coupled movement of water, vapor, and heat, can better describe the physical mechanisms of the hydrological cycle in the vadose zone during the freezing-thawing periods.
Sprache
Englisch
Identifikatoren
ISSN: 0022-1694
eISSN: 1879-2707
DOI: 10.1016/j.jhydrol.2021.126250
Titel-ID: cdi_crossref_primary_10_1016_j_jhydrol_2021_126250

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX