Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 30

Details

Autor(en) / Beteiligte
Titel
Nonthermal plasma catalysis for toluene decomposition over BaTiO3-based catalysts by Ce doping at A-sites: The role of surface-reactive oxygen species
Ist Teil von
  • Journal of hazardous materials, 2021-03, Vol.405, p.124156, Article 124156
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The insights on the primary surface-reactive oxygen species and their relation with lattice defects is essential for designing catalysts for plasma-catalytic reactions. Herein, a series of Ba1−xCexTiO3 perovskite catalysts with high specific surface areas (68.6–85.6 m2 g−1) were prepared by a facile in-situ Ce-doping strategy and investigated to catalytically decompose toluene. Combining the catalysts with a nonthermal plasma produced a significant synergy effect. The highest decomposition efficiency (100%), COx selectivity (98.1%), CO2 selectivity (63.9%), and the lowest O3 production (0 ppm) were obtained when BC4T (Ce/Ti molar ratio = 4:100) was packed in a coaxial dielectric barrier discharge reactor at a specific input energy of 508.8 J L−1. The H2-TPR, temperature-programmed Raman spectra, EPR and OSC results suggested that superoxides (•O2−) were the primary reactive oxygen species and were reversibly generated on the perovskite surface. Molecular O2 was adsorbed and activated at the active sites (Ti3+-VO) via an electron transfer process to form •O2−. Surface-adsorbed •O2− had a greater effect on the heterogeneous surface plasma reactions than the dielectric constant, and enhanced the toluene decomposition and intermediate oxidation. A possible reaction path of toluene decomposition was also proposed. [Display omitted] •A series of Ba1−xCexTiO3 perovskite catalysts with superior specific surface areas were prepared.•The BC4T catalysts with Ce/Ti molar ratio of 4:100 exhibited the prominent plasma-catalytic decomposition of toluene.•Superoxides (•O2−) were identified as the primary reactive oxygen species and were reversibly generated on the surface.•Surface-adsorbed •O2− had a greater effect on the heterogeneous surface plasma reactions than the dielectric constant.
Sprache
Englisch
Identifikatoren
ISSN: 0304-3894
eISSN: 1873-3336
DOI: 10.1016/j.jhazmat.2020.124156
Titel-ID: cdi_crossref_primary_10_1016_j_jhazmat_2020_124156

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX