Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 171

Details

Autor(en) / Beteiligte
Titel
Highly efficient solar light-driven photocatalytic hydrogen production over Cu/FCNTs-titania quantum dots-based heterostructures
Ist Teil von
  • Journal of environmental management, 2020-01, Vol.254, p.109747, Article 109747
Ort / Verlag
England: Elsevier Ltd
Erscheinungsjahr
2020
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • The need for clean and eco-friendly energy sources has increased enormously over the years due to adverse impacts caused by the detrimental fossil fuel energy sources on the environment. This work reports the safest and most efficient route for hydrogen generation using solar light receptive functionalized carbon nanotubes-titania quantum dots (FCNT-TQDs) as photocatalysts under the influence of solar light irradiation. Predominantly, dual capability of CNT as co-catalyst and photo-sensitizer reduced the recombination rate of charge carriers, and facilitated the efficient light harvesting. The bulk production of hydrogen via water harvesting is considered, wherein photocatalyst synthesized was tuned by the optimum addition of copper to achieve higher production rate of hydrogen up to 54.4 mmol h−1g−1, nearly 25-folds higher than that of pristine TiO2 quantum dots. Addition of copper has a crucial role in improving the rate of hydrogen generation. The ternary composite exhibited 5.4-times higher hydrogen production compared to FCNT-TQDs composite. •Cu/FCNT-TQDs ternary photocatalyst was synthesized by simple hydrothermal and followed by photo-deposition method.•Evaluated the role of FCNTs and Cu for improved hydrogen efficacy of TQDs under natural sunlight irradiation.•TQDs band gap energy reduced from 3.2 eV to 2.8 eV which is due to the strong interface formed between the Cu/FCNT-TQDs.•Optimized Cu/FCNT-TQDs photocatalyst generated 54.4 m mol g−1 h−1 hydrogen, much higher than bare TQDs.
Sprache
Englisch
Identifikatoren
ISSN: 0301-4797
eISSN: 1095-8630
DOI: 10.1016/j.jenvman.2019.109747
Titel-ID: cdi_crossref_primary_10_1016_j_jenvman_2019_109747

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX