Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 26

Details

Autor(en) / Beteiligte
Titel
Machine-learning assisted design of as-cast NiCoFeCrAlTi multi-principal element alloys with tensile yield strength over 1.35 GPa
Ist Teil von
  • Intermetallics, 2024-03, Vol.166, p.108170, Article 108170
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2024
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • As-cast alloys have the advantage of short forming processes, but there is currently a lack of research on systematic design alloys with better mechanical properties. Herein, combining a machine-learning with random forest model algorithm, a high-throughput alloy design framework under multidimensional constraints was used to discover new NiCoFeCrAlTi multi-principal element alloys (MPEAs) for superior tensile properties. The as-cast dual-phase Ni28Fe32Cr25Al10Ti5 alloy with 1386 MPa of tensile yield strength and 1.8% uniform elongation was designed, which is much higher than the best value in the original training dataset. This apparent high strength can be attributed to the phase interfacial strengthening, in which the soft face-centered cubic (FCC) phase precipitated extensively aside the grain boundaries of hard body-centered cubic (BCC) matrix. The BCC matrix provides high strength and FCC precipitates play role in ductility. Machine learning is expected to be utilized for designing as-cast MPEAs with superior mechanical properties. •An uncomplicated tensile property-orientated materials design strategy was proposed.•The as-cast Ni28Fe32Cr25Al10Ti5 alloy with 1386 MPa of tensile yield strength was designed.•This high strength can be attributed to the phase interfacial strengthening.•The dominant characteristic of Ni28Fe32Cr25Al10Ti5 HEA was that fine lamellar and granular FCC phase intricately intertwined at the grain boundary of BCC phase.
Sprache
Englisch
Identifikatoren
ISSN: 0966-9795
eISSN: 1879-0216
DOI: 10.1016/j.intermet.2023.108170
Titel-ID: cdi_crossref_primary_10_1016_j_intermet_2023_108170

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX