Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 21
Information sciences, 2024-01, Vol.652, p.119746, Article 119746
2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Granular computing-based deep learning for text classification
Ist Teil von
  • Information sciences, 2024-01, Vol.652, p.119746, Article 119746
Ort / Verlag
Elsevier Inc
Erscheinungsjahr
2024
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Granular computing involves a comprehensive process that encompasses theories, methodologies, and techniques to solve complex problems, rather than being just an algorithm. As the volume of generated data continues to grow rapidly, data-driven problems have become increasingly complex. Although deep learning models have outperformed traditional machine learning models in solving complex problems, there is still room for enhancing their performance. In this paper, we propose a granular computing-based deep learning model, aimed at enhancing classifier accuracy in complex natural language-based problems. The proposed approach involves a new granulation method, which comprises a novel algorithm built on combinatorial concepts and ten rule-based numerical granules. By utilizing this granulation method, each granule adds a new representation and concept to the existing data. The proposed model consists of multiple models that perform learning separately in a granular view. In the final step, the model pays attention to the granulated matrices generated by various models. The proposed model is evaluated using datasets related to cyberbullying and two hate speech datasets, resulting in significant improvements in accuracy compared to state-of-the-art models. •Proposing a granular computing-based deep learning model for text classification.•Using granular computing for data augmentation from a new representation in the context of deep learning-based text classification.•Utilizing different representations of the existing texts.•Proposing the first stacked-BILSTM-SVM model in granular computing.
Sprache
Englisch
Identifikatoren
ISSN: 0020-0255
eISSN: 1872-6291
DOI: 10.1016/j.ins.2023.119746
Titel-ID: cdi_crossref_primary_10_1016_j_ins_2023_119746

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX