Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 2077
Information sciences, 2023-09, Vol.642, p.119154, Article 119154
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Multi-objective deep reinforcement learning for computation offloading in UAV-assisted multi-access edge computing
Ist Teil von
  • Information sciences, 2023-09, Vol.642, p.119154, Article 119154
Ort / Verlag
Elsevier Inc
Erscheinungsjahr
2023
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Unmanned aerial vehicle-assisted multi-access edge computing (UAV-MEC) plays an important role in some complex environments such as mountainous and disaster areas. Computation offloading problem (COP) is one of the key issues of UAV-MEC, which mainly aims to minimize the conflict goals between energy consumption and delay. Due to the time-varying and uncertain nature of the UAV-MEC system, deep reinforcement learning is an effective method for solving the COP. Different from the existing works, in this paper, the COP in UAV-MEC system is modeled as a multi-objective Markov decision process, and a multi-objective deep reinforcement learning method is proposed to solve it. In the proposed algorithm, the scalar reward of reinforcement learning is expanded into a vector reward, and the weights are dynamically adjusted to meet different user preferences. The most important preferences are selected by non-dominated sorting, which can better maintain the previously learned strategy. In addition, the Q network structure combines Double Deep Q Network (Double DQN) with Dueling Deep Q Network (Dueling DQN) to improve the optimization efficiency. Simulation results show that the algorithm achieves a good balance between energy consumption and delay, and can obtain a better computation offloading scheme.
Sprache
Englisch
Identifikatoren
ISSN: 0020-0255
eISSN: 1872-6291
DOI: 10.1016/j.ins.2023.119154
Titel-ID: cdi_crossref_primary_10_1016_j_ins_2023_119154

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX