Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 15

Details

Autor(en) / Beteiligte
Titel
Mechanical experiments and constitutive model of natural gas hydrate reservoirs
Ist Teil von
  • International journal of hydrogen energy, 2017-08, Vol.42 (31), p.19810-19818
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2017
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Natural gas hydrate is a new type of green energy resources and has great development prospects, and it has attracted worldwide attentions. The exploitation of natural gas hydrate may result in a series of geological disasters. Therefore, the constitutive model of natural gas hydrate bearing sediments needs to be established to reveal deformation laws of the reservoir sediments and accurately evaluate mechanical properties of hydrate reservoirs. This is the basic guarantees for the effective exploitation of natural gas hydrate resources. The triaxial compressive tests were conducted on samples of natural gas hydrate sediment. Furthermore, the Duncan-Chang hyperbolic model was modified by considering the influences of hydrate saturation based on the test results to obtain the constitutive model according with the deformation characteristics of natural gas hydrate reservoirs. The results show that the stress-strain curves of natural gas hydrate reservoirs show unobvious compaction stage and peak strength, short elastic stage, long yield stage, and significant strain hardening characteristics. After applying loads on natural gas hydrate bearing sediments, the internal solid particles were dislocated and slid. When the loads were small, the sediments demonstrated elastic deformation. With the increase of loads, plastic flows appeared in the interior, and the hydrate crystals were re-orientated, thus the sediments showing plastic deformation. Initial tangent elastic modulus increased with the effective confining pressures, which had little correlations with hydrate saturation. Furthermore, the damage ratio increases with the increase of effective confining pressures, while slightly decreases with the increase of natural gas hydrate saturation. The predicted results of stress-strain curves of sediments with different hydrate saturations well coincide with the results of triaxial compressive tests, indicting the feasibility and rationality of this model. •Compressive experiments of methane hydrate bearing sediments (MHBS) were done.•The stress-strain curves of MHBS show strain hardening and unobvious peak strength.•A constitutive model of natural gas hydrate reservoirs is proposed.
Sprache
Englisch
Identifikatoren
ISSN: 0360-3199
eISSN: 1879-3487
DOI: 10.1016/j.ijhydene.2017.06.135
Titel-ID: cdi_crossref_primary_10_1016_j_ijhydene_2017_06_135

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX