Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
International journal of heat and mass transfer, 2024-08, Vol.228, p.125628, Article 125628
2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Computational insights into gas atomization of FeCoNiCrMoBSi high-entropy alloy: From droplet formation to rapid solidification
Ist Teil von
  • International journal of heat and mass transfer, 2024-08, Vol.228, p.125628, Article 125628
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2024
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •CFD simulations clarified the gas atomization process for FeCoNiCrMoBSi HEA.•Experimentally observed, the size distribution of gas-atomized HEA powder concentrates in the 30∼40 μm range, aligning with numerical simulations.•The FCC structure and eutectic microstructural characteristics are observed in the gas-atomized FeCoNiCrMoBSi HEA powder.•The estimated cooling rate of secondary droplets ranges from 1.22 × 104 K/s to 2.64 × 105 K/s. The intricate processes governing the gas atomization of molten metal droplets and their subsequent solidification hold paramount significance in materials science. Computational fluid dynamics simulations have emerged as indispensable tools for unraveling the complexities inherent in metal melt atomization. This study employed the volume of fluid method and the shear-stress transport k-ω turbulence model to simulate the primary atomization process of a FeCoNiCrMoBSi high-entropy alloy. Subsequently, the discrete phase model and Taylor analogy breakup model, based on the gas Weber number and incorporating primary atomization outcomes as initial conditions, were utilized to simulate droplet formation during the secondary atomization process. Analysis of the particle size distribution at the outlet of the geometric model demonstrated excellent agreement with experimental data for gas-atomized FeCoNiCrMoBSi high-entropy alloy powder. Furthermore, comprehensive characterization analyses were conducted to probe the phase constitution and structure of FeCoNiCrMoBSi powder produced by gas atomization. The results revealed that, irrespective of particle size, the powder exhibited a face-centered cubic structure and distinctive eutectic microstructural characteristics. The numerical simulation provided insights into the solidification process of secondary droplets by integrating inverse pole figure data for gas-atomized powder across varying particle sizes. The estimated cooling rate of secondary droplets ranged from 1.22 × 104 K/s to 2.64 × 105 K/s. These findings significantly advance the understanding of the gas atomization mechanism of the FeCoNiCrMoBSi high-entropy alloy, paving the way for the development of more efficient manufacturing processes for advanced materials. [Display omitted]
Sprache
Englisch
Identifikatoren
ISSN: 0017-9310
eISSN: 1879-2189
DOI: 10.1016/j.ijheatmasstransfer.2024.125628
Titel-ID: cdi_crossref_primary_10_1016_j_ijheatmasstransfer_2024_125628

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX