Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 109
International journal of electrical power & energy systems, 2022-07, Vol.139, p.107999, Article 107999
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Inter-turn short-circuit fault diagnosis using robust adaptive parameter estimation
Ist Teil von
  • International journal of electrical power & energy systems, 2022-07, Vol.139, p.107999, Article 107999
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2022
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • This paper presents a robust adaptive parameter estimation procedure, applied to stator inter-turn short-circuit (ITSC) fault detection in induction motors (IM). Using a fault state space model, it is proposed the application of an adaptive parameter estimation methodology, used to identify a parameter related to the failure severity. A linear parameter varying (LPV) robust H∞ filtering technique, obtained by linear matrix inequalities (LMI), is applied to estimate the unavailable states, being the proposed method robust to external disturbances, and also adequate to online applications. The proposed framework is validated through simulations and experimental tests — conducted in a modified IM that allows the emulation of ITSC faults. Tests are performed under several operational conditions, including different levels of fault severity, load torque and voltage unbalance, demonstrating the validity of the ITSC fault detection approach. •A non-invasive inter-turn short-circuit detection in induction motors is developed.•A new state-space model representation, affine to fault parameters is introduced.•A robust LPV filtering technique is applied to obtain motor states under disturbance.•A new parameter set is introduced, representing fault level and its evolution.•Fault severity under voltage unbalance and several torque levels is obtained.
Sprache
Englisch
Identifikatoren
ISSN: 0142-0615
eISSN: 1879-3517
DOI: 10.1016/j.ijepes.2022.107999
Titel-ID: cdi_crossref_primary_10_1016_j_ijepes_2022_107999

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX