Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 14

Details

Autor(en) / Beteiligte
Titel
Modeling the formation of Menrva impact crater on Titan: Implications for habitability
Ist Teil von
  • Icarus (New York, N.Y. 1962), 2021-12, Vol.370, p.114679, Article 114679
Ort / Verlag
Elsevier Inc
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Titan is unique in the solar system: it is an ocean world, an icy world, an organic world, and has a dense atmosphere. It is a geologically active world as well, with ongoing exogenic processes, such as rainfall, sediment transportation and deposition, erosion, and possible endogenic processes, such as tectonism and cryovolcanism. This combination of an organic and an ocean world makes Titan a prime target for astrobiological research, as biosignatures may be present in its surface, in impact melt deposits and in cryovolcanic flows, as well as in deep ice and water ocean underneath the outer ice shell. Impact craters are important sites in this context, as they may have allowed an exchange of materials between Titan's layers, in particular between the surface, composed of organic sediments over icy bedrock, and the subsurface ocean. It is also possible that impacts may have favored the advance of prebiotic chemical reactions themselves, by providing thermal energy that would allow these reactions to proceed. To investigate possible exchange pathways between the subsurface water ocean and the organic-rich surface, we modeled the formation of the largest crater on Titan, Menrva, with a diameter of ca. 425 km. The premise is that, given a large enough impact event, the resulting crater could breach into Titan's ice shell and reach the subsurface ocean, creating pathways connecting the surface and the ocean. Materials from the deep subsurface ocean, including salts and potential biosignatures of putative subsurface biota, could be transported to the surface. Likewise, atmospherically derived organic surface materials could be directly inserted into the ocean, where they could undergo aqueous hydrolysis to form potential astrobiological building blocks, such as amino acids. To study the formation of a Menrva-like impact crater, we staged numerical simulations using the iSALE-2D shock physics code. We varied assumed ice shell thickness from 50 to 125 km and assumed thermal structure over a range consistent with geophysical data. We analyze the implications and potential contributions of impact cratering as a process that can facilitate the exchange of surface organics with liquid water. Our findings indicate that melt and partial melt of ice took place in the central zone, reaching ca. 65 km depth and ca. 60 km away from the center of the structure. Furthermore, a volume of ca. 102 km3 of ocean water could be traced to depths as shallow as 10 km. These results highlight the potential for a significant exchange of materials from the surface (organics and ice) and the subsurface (water ocean), particularly in the crater's central area. Our studies suggest that large hypervelocity impacts are a viable and likely key mechanism to create pathways between the underground water ocean and Titan's organic-rich surface layer and atmosphere. •Large impacts on icy planetary bodies are still poorly constrained.•Titan has unique characteristics among all planetary bodies in the solar system.•A pathway between Titan's surface and subsurface ocean by large impacts was investigated.•This link promotes an intermix among organics, ice and ocean water.•This impact-induced pathway is relevant for Titan's habitability.
Sprache
Englisch
Identifikatoren
ISSN: 0019-1035
eISSN: 1090-2643
DOI: 10.1016/j.icarus.2021.114679
Titel-ID: cdi_crossref_primary_10_1016_j_icarus_2021_114679

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX