Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Biological soil health indicators respond to tillage intensity: A US meta-analysis
Ist Teil von
  • Geoderma, 2020-06, Vol.369, p.114335, Article 114335
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •Tillage intensity can affect biological soil health indicators in many ways.•Reducing tillage intensity improves SOC, biological activity, and labile C and N fractions of SOM.•Reduced tillage effects are more expressive in the topsoil and when managed with complementary conservation practices.•Perennial systems are the best strategy for increasing biological soil health.•Biological indicators are sensitive to management practices, being useful for soil health assessment. Tillage intensity affects soil microbiological activity in many ways, often driven by changes in soil organic C (SOC) content. The magnitude and direction of those changes, however, depends on inherent (e.g., soil type and texture), experimental (e.g., study duration and sampling depth) and agronomic factors (e.g., cropping system and crop residue management). This nationwide meta-analysis examines published effects of chisel plowing (CP), no-tillage (NT), and perennial cropping systems (PER) relative to moldboard plow (MP) on seven soil health indicators: SOC, microbial biomass C (MBC), microbial biomass N (MBN), soil respiration (Resp), active-C (AC), beta-glucosidase activity (BG) and soil protein (Prot) within four soil depth increments in 302 studies from throughout the United States (U.S.). Overall, converting from MP to CP primarily affected topsoil (0 to ≤ 15 cm) SOC, MBC, and Resp, whereas converting from MP to NT significantly increased all seven soil health indicators in the topsoil. Below the topsoil, NT had greater MBC, MBN, Resp, and BG relative to MP (i.e., 15 to 25-cm). The impact of NT was affected by latitude, soil order, time under NT, and cropping system. Among soil orders, management practices had the largest positive effects in Ultisols, Inceptisols, Alfisols, and Mollisols. Those effects were most noticeable at lower latitudes, in systems that included cover crops or residue retention, and in experiments conducted for at least three years. Perennial systems had a positive effect on all soil health indicators at all soil depths (0 to >40-cm). The positive response of PER systems compared to MP was enhanced at lower latitudes and in Alfisols, Inceptisols, Entisols, and Mollisols. Based on this meta-analysis, reducing tillage intensity, planting cover crop and/or minimizing crop residue removal within annual cropping systems can significantly improve soil biological health in the U.S. Finally, we demonstrate that SOC and many other biological indicators are sensitive to management practices, confirming their utility in soil health assessment.
Sprache
Englisch
Identifikatoren
ISSN: 0016-7061
eISSN: 1872-6259
DOI: 10.1016/j.geoderma.2020.114335
Titel-ID: cdi_crossref_primary_10_1016_j_geoderma_2020_114335

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX