Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 18 von 21

Details

Autor(en) / Beteiligte
Titel
Temperature-dependent variations in mineralogy, major element chemistry and the stable isotopes of boron, lithium and chlorine resulting from hydration of rhyolite: Constraints from hydrothermal experiments at 150 to 350 °C and 25 MPa
Ist Teil von
  • Geochimica et cosmochimica acta, 2019-09, Vol.261, p.269-287
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2019
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals
Beschreibungen/Notizen
  • Rhyolite-hosted hydrothermal systems in the continental crust contain valuable energy and mineral resources that make them of special interest across several scientific disciplines. Despite extensive research on these systems, the temperature-dependence of chemical reactions between host rocks and aqueous-rich fluids and the mineralogical transformations resulting from these reactions are not well quantified. To expand our understanding of the controlling processes operating in these systems, we carried out seven laboratory experiments in which rhyolite was reacted with deionized water at 150 °C to 350 °C and 25 MPa. An additional experiment at 200 °C was carried out to examine the effect of dissolved CO2 on the reactions. The overarching goal of this experimental study was to provide new insights on the temperature-dependence of water-rock interaction in continental hydrothermal systems. We applied a wide range of chemical, isotopic and mineralogical methods to analyze the reacted rhyolite and waters, and the major observations are: (1) the rhyolite progressively hydrates with increasing temperature between 150 °C to a maximum of 8.2 wt% H2O at 275 °C; hydration then decreases until 350 °C in conjunction with the destruction of the rhyolite glass and crystallization of secondary mineral phases; (2) the ratio of molecular water (H2Om) to hydroxyl (OH−) of the water that is dissolved in the reacted rhyolite decreases from ∼7 at 150 °C to ∼4 at 250 °C; (3) the main secondary minerals formed are the zeolite ferrierite (T ≥ 275 °C); biotite, albite and cristobalite mainly form at higher experimental temperatures (T ≥ 300 °C); (4) the reacted waters are nearly saturated with respect to amorphous silica; (5) at temperatures ≥ 275 °C nearly all the chlorine is leached into solution; (6) fluorine leaching from the rhyolite gradually increases between 150 °C and 250 °C, but then gradually decreases at higher temperatures and is incorporated into a secondary mineral phase; (7) dissolved CO2 in the water enhances alkali metal cation leaching from the rhyolite; and (8) calculated Na-K and silica geothermometer temperatures differ from the experimental temperatures by varying amounts. In addition, apart from some small lithium isotope fractionation at temperatures ≤ 250 °C, the stable isotopes of boron, lithium and chlorine do not fractionate during rhyolite-water reactions, and the stable isotope compositions of these species in the reacted water are similar to those in the reactant rhyolite. These results provide new insights for a broad range of applications, including quantifying processes involving rhyolite glass hydration (obsidian hydration dating, perlite formation and discriminating secondary from magmatic water in rhyolitic matrix-glass of volcanic pyroclasts), for geothermal energy and mineral deposit exploration and for monitoring volcanoes.
Sprache
Englisch
Identifikatoren
ISSN: 0016-7037
eISSN: 1872-9533
DOI: 10.1016/j.gca.2019.07.012
Titel-ID: cdi_crossref_primary_10_1016_j_gca_2019_07_012

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX