Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 213
Energy (Oxford), 2022-12, Vol.260, p.125095, Article 125095
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Research on energy management strategy of heavy-duty fuel cell hybrid vehicles based on dueling-double-deep Q-network
Ist Teil von
  • Energy (Oxford), 2022-12, Vol.260, p.125095, Article 125095
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2022
Quelle
Access via ScienceDirect (Elsevier)
Beschreibungen/Notizen
  • Fuel cell hybrid vehicle (FCHV) is an effective way to improve emissions and fuel economy. Energy management strategy (EMS), as a core assignment of FCHV, its most significant challenge is to achieve a sensible trade-off between system degradation and hydrogen consumption with less computational cost under diverse environments. Although most strategies can employ finite-density discretization to approach the optimum solutions, it brings poor performance. Herein, an advanced dueling-double-deep Q-network (D3QN) EMS based on a deep reinforcement learning framework is developed to solve the challenges, which can process higher-dimensional space and output dominant actions for an agent to obtain higher cumulative rewards. By adopting a dueling neural network, a better policy is acquired via generalizing learning across actions in the presence of similar value-actions. Moreover, an evaluation mechanism of Allowable Approach Punishment is introduced into rewards to mitigate system degradation. Simulation experiments reveal the prominence of the D3QN algorithm. Results demonstrate D3QN achieves less hydrogen consumption and retards fuel cell degradation on the premise of meeting power balance. Furthermore, adaptability and robustness are verified. Outcomes show D3QN can not only adapt to complex surroundings but also overcome noise and instability. Finally, real-time applicability is validated via the HIL test-bench. •An advanced D3QN framework for FCHVs EMS is proposed.•An Allowable Approach Punishment is introduced to mitigate system degradation.•Optimality comparison with a conventional and intelligent algorithm.•Adaptability, robustness, and real-time application are validated.•The D3QN can retard FC degradation and improve the economy of hydrogen consumption.
Sprache
Englisch
Identifikatoren
ISSN: 0360-5442
DOI: 10.1016/j.energy.2022.125095
Titel-ID: cdi_crossref_primary_10_1016_j_energy_2022_125095

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX