Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 21 von 531
Electronic commerce research and applications, 2019-11, Vol.38, p.100889, Article 100889
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Mining user requirements to facilitate mobile app quality upgrades with big data
Ist Teil von
  • Electronic commerce research and applications, 2019-11, Vol.38, p.100889, Article 100889
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2019
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •A novel ranking model is proposed to rank the importance of customer requirements.•The rating data and review data are combined for feature engineering.•Context-award text analytics is suggested for customer requirement mining.•Companies are benefit to adopt online customer requirements for product improvements. A domain-dependent customer requirements mining framework to facilitate mobile app quality upgrades is proposed in this paper. We develop a new ranking model to rank the importance of different customer requirements by considering both the rating data and review data. We prove the effectiveness in terms of product quality improvements based on 265 version update cases for 15 popular mobile apps. As there is little research regarding identifying the business value of customer requirements mining, this study can be highly beneficial to the further development of research concerning the business value of adopting online customer requirements for product improvements.
Sprache
Englisch
Identifikatoren
ISSN: 1567-4223
eISSN: 1873-7846
DOI: 10.1016/j.elerap.2019.100889
Titel-ID: cdi_crossref_primary_10_1016_j_elerap_2019_100889

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX