Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 376

Details

Autor(en) / Beteiligte
Titel
Zr-doped P2-Na0.75Mn0.55Ni0.25Co0.05Fe0.10Zr0.05O2 as high-rate performance cathode material for sodium ion batteries
Ist Teil von
  • Electrochimica acta, 2017-01, Vol.223, p.92-99
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2017
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • [Display omitted] •Zr-ion substitution decreases lattice parameter a and expand the lattice parameter c.•Zr4+ doped P2-Na0.75Mn0.55Ni0.25Co0.05Fe0.10Zr0.05O2 show enhanced rate capability and cyclic performance.•The aliovalent substitution of Zr4+ for Fe3+ improves the electronic conductivity.•The stronger ZrO bond also contributes to the enhanced electrochemical performances. In this work, Zr4+ doped P2-Na0.75Mn0.55Ni0.25Co0.05Fe0.10Zr0.05O2 has been synthesized and investigated as high-rate sodium-ion battery cathode material for the first time. XRD results indicate that Zr-ion with a big size cannot completely dissolve into the crystal structure, but the residual ZrO2 shows little impact on the electrochemical performance in comparison with the post-added ZrO2. With the substitution of Zr4+ for Fe3+, the lattice parameter a decreases but c increases, resulting in the reduced lattice volume. In comparison with the Zr-free sample, Na0.75Mn0.55Ni0.25Co0.05Fe0.10Zr0.05O2 (Zr05) can deliver a discharge capacity of about 95, 74, 61 and 53mAhg−1 at 2C, 5C, 8C and 10C. At the current density of 2C, the capacity retention after 100 cycles has increased from 57% of Zr0 to 74% of Zr05. The results demonstrate that Zr-ion substitution can effectively improve the rate performance and cycling stability of P2-structure cathode materials. The role of Zr4+ can be summarized as follows: (1) Zr-O (△Hf298K(Zr-O)=760kJmol−1) has a stronger bond energy than that of FeO (△Hf298K(Fe-O)=409kJmol−1), which enhances the structure stability and cycling performance; (2) the aliovalent substitution of Zr4+ for Fe3+ enhances the electronic conductivity, which is favorable for the rate capability; (3) the substitution of Zr4+ for Fe3+ can be beneficial to Na+ conduction because it increases disorder in the transition metal (TM) layers and can prevent Na+/vacancy ordering, which further enhances the rate capability.
Sprache
Englisch
Identifikatoren
ISSN: 0013-4686
eISSN: 1873-3859
DOI: 10.1016/j.electacta.2016.12.019
Titel-ID: cdi_crossref_primary_10_1016_j_electacta_2016_12_019

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX