Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 121

Details

Autor(en) / Beteiligte
Titel
Direct observation of metal dissolution during anodization of niobium
Ist Teil von
  • Electrochemistry communications, 2017-01, Vol.74, p.5-8
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2017
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals Complete
Beschreibungen/Notizen
  • Direct in situ Nb release measurements were performed by ICP-MS during Nb anodisation. In the potentiodynamic regime (0–8 VSHE, 10mVs−1), constant electrochemical current (45μAcm−2) and Nb dissolution rate (70pgs−1cm−2) confirm the high field oxide growth. The valve metal character of Nb is demonstrated during the reverse scan when both electrochemical current and dissolution rate decrease, indicating that Nb release is solely triggered by the high field conditions. It was shown that an extremely small fraction of the current (0.75%) was responsible for Nb dissolution. During 1000s of potentiostatic anodisations up to 9 VSHE the dissolution rates decreased from 100pgs−1cm−2 to 10pgs−1cm−2 and were slightly potential dependent, with higher dissolution rates at higher anodisation potentials. The electrochemical current transients decayed faster than the dissolution rates, leading to an overall increase in the dissolution current fractions with time (up to 4.5% at 3V). This fraction was also found to be slightly potential dependent. Interestingly, higher anodisation potentials resulted in lower dissolution fractions during potentiostatic oxide formation. Overall, the potentiostatic dissolution fractions were at least twice as high as in the potentiodynamic case. [Display omitted] •An in situ investigation of metal dissolution during anodisation of Nb was performed.•A constant dissolution rate during potentiodynamic Nb oxide growth was observed.•A time-dependent dissolution was identified during potentiostatic anodisation of Nb.•The Nb corrosion rate is dependent on potential in the potentiostatic oxide growth regime.
Sprache
Englisch
Identifikatoren
ISSN: 1388-2481
eISSN: 1873-1902
DOI: 10.1016/j.elecom.2016.11.011
Titel-ID: cdi_crossref_primary_10_1016_j_elecom_2016_11_011

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX