Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Computers & security, 2024-09, Vol.144, p.103956, Article 103956
2024

Details

Autor(en) / Beteiligte
Titel
A frequency-injection backdoor attack against DNN-Based finger vein verification
Ist Teil von
  • Computers & security, 2024-09, Vol.144, p.103956, Article 103956
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2024
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •Huijie Zhang is currently pursuing the Ph.D. degree with Southeast University, Nanjing, China. His current research interests include deep learning, computer vision, image processing, biometric 2321 security, and pattern recognition.•Weizhen Sun is currently pursuing the Ph.D. degree with Southeast University, Nanjing, China. 2319 His current research interests include deep learning, computer vision, image processing, biometric 2321 security, and pattern recognition.•Ling Lu received the M.S. degree in Nanjing Medicial University Nanjing, Chian 2002, and PHD degree 2007. Recent research has demonstrated that deep neural networks, typically used in finger vein recognition, are susceptible to different types of attacks, such as adversarial attacks, data poisoning attacks, and backdoor attacks. Among the attacks, backdoor attacks occur in almost every stage of the deep learning pipeline. Finger vein recognition has extensively been used in real-world applications for personal identity authentication. To develop a secure finger vein recognition system, one must study possible backdoor attacks, which can embed hidden malicious behaviors into the system. Existing backdoor attacks are as easily perceptible as conspicuous spatial triggers and difficult-to-resist data augmentation. To address this issue, we propose a novel frequency-injection-based backdoor attack method capable of delivering attacks in finger vein recognition. Specifically, images are transformed from the spatial domain to the frequency domain by discrete wavelet transform (DWT), and the trigger injects several times in the high-frequency part in the vertical direction. Experimental results of public finger vein datasets validate the proposed method's effectiveness, showing good attack performance and bypassing backdoor defense.
Sprache
Englisch
Identifikatoren
ISSN: 0167-4048
eISSN: 1872-6208
DOI: 10.1016/j.cose.2024.103956
Titel-ID: cdi_crossref_primary_10_1016_j_cose_2024_103956

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX