Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 107
Computational materials science, 2022-12, Vol.215, p.111788, Article 111788
2022

Details

Autor(en) / Beteiligte
Titel
Effects of tensile strain on the electronic, optical and ferroelectric properties of a multifunctional R3c InFeO3 compound
Ist Teil von
  • Computational materials science, 2022-12, Vol.215, p.111788, Article 111788
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2022
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • [Display omitted] •We study multifunctional R3c InFeO3 under strain using DFT calculations.•Tensile strain leads to an ideal direct energy band gap of 1.7 eV.•The maximum photoconversion efficiency is found to be 20%•The effective masses of charge carriers are found to be low.•The binding energy of photogenerated excitons is estimated to be very low. The search for materials with appropriate ferroelectric and photovoltaic properties is an intense field of research. The main objective of these studies is to obtain efficient materials for solar cell applications. In this work, non-collinear spin density functional theory calculations are performed to describe the electronic, optical, and ferroelectric properties of a multiferroic R3c InFeO3 compound under tensile strain. Our studies reveal that under conditions of tensile strain, this material had ideal fundamental properties for photovoltaic applications. Under 9% tensile strain of the R3c InFeO3 unit cell volume (a = 5.536 Å and c = 13.808 Å), a direct energy band gap of 1.74 eV was found. With this energy band gap, the material absorbs the entire range of visible light, and for a film thickness of up to 100 nm it reaches a maximum photoconversion efficiency of 20%, a higher value than observed in some semiconductors that are used in practice. Furthermore, the effective mass of charge carriers (m*), and the exciton binding energy (Eb) are significantly decreased (m* < 0.4 m0 and Eb < 1.0 meV), which likely to lead to better charge mobility and easier separation of the electron-hole pair in the process of photoabsorption. Under this level of strain, the spontaneous electric polarization was reduced to 77.6 µC/cm2, a value that is still higher than other ferroelectric-photovoltaic materials.
Sprache
Englisch
Identifikatoren
ISSN: 0927-0256
eISSN: 1879-0801
DOI: 10.1016/j.commatsci.2022.111788
Titel-ID: cdi_crossref_primary_10_1016_j_commatsci_2022_111788

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX