Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 848
Computer methods in applied mechanics and engineering, 2023-05, Vol.410, p.116019, Article 116019
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Single-track thermal analysis of laser powder bed fusion process: Parametric solution through physics-informed neural networks
Ist Teil von
  • Computer methods in applied mechanics and engineering, 2023-05, Vol.410, p.116019, Article 116019
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2023
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Modelling the highly localised and rapid phenomena occurring during metal additive manufacturing (MAM) processes such as the laser powder bed fusion (LPBF) demands the adoption of very fine time- and space-discretisation and therefore high computational cost for the classical simulation approaches, namely the finite element method (FEM). Particularly, when the solution is required for a range of scenarios, e.g. in sensitivity or optimisation analyses, computation costs of such simulations are not affordable. As an alternative strategy, this study explores the application of physics informed neural networks (PINNs) as a low-cost physics-based simulation approach for the thermal analysis of the LPBF process, through which reliable transient and steady-state temperature profiles for single-track LPBF depositions are achieved. An unsupervised learning strategy is employed for PINNs to parametrically solve the heat transfer equation for the LPBF process. The trained PINNs calculate the temperature profiles and the melt-pool dimensions evolving during the LPBF process for any given set of material’s thermal properties and process conditions at practically zero computational cost. The reliability of the PINNs outcomes is verified through ground-truth data generated based on several benchmark equivalent finite element simulations. •PINNs can be employed as robust and reliable approximators for parametric PDEs.•Trained PINNs (unsupervised) predict LPBF temperature profiles for various conditions.•The reliability of PINNs is verified based on the outcomes of FEM.•PINNs enable real-time analysis for the control of LPBF process (Digital Twins).
Sprache
Englisch
Identifikatoren
ISSN: 0045-7825
eISSN: 1879-2138
DOI: 10.1016/j.cma.2023.116019
Titel-ID: cdi_crossref_primary_10_1016_j_cma_2023_116019

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX