Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 381

Details

Autor(en) / Beteiligte
Titel
Degradation of norfloxacin in aqueous solution by atmospheric-pressure non-thermal plasma: Mechanism and degradation pathways
Ist Teil von
  • Chemosphere (Oxford), 2018-11, Vol.210, p.433-439
Ort / Verlag
England: Elsevier Ltd
Erscheinungsjahr
2018
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Norfloxacin is a synthetic antibiotics drug which is widely used in the treatment of infectious diseases and also often carelessly released into natural environment resulting in antibiotics-contaminated wastewater. In this work, we employed atmospheric-pressure non-thermal dielectric barrier discharge (DBD) to treat norfloxacin-contaminated water and investigated the degradation efficiency and mechanism for the plasma treatments under different conditions with varied working gas atmospheres. Our results showed that the DBD efficiency for norfloxacin degradation depended on reactive oxygen/nitrogen species (RONS) produced in the plasma treatment, while the plasma-induced hydroxyl radical played a critical role in the norfloxacin degradation. For O2-DBD, except for the contribution from reactive oxygen species (ROS), ozone could also play an important role. For N2-DBD, reactive nitrogen species (RNS) could work synergistically with H2O2 to enhance the degradation effect. We also checked the plasma activated liquid (PAL) effect and analyzed the degradation products so that the degradation mechanism and pathways could be elucidated. This work may therefore provide the guidance for effective and feasible application of low-temperature plasma technology in treatment of antibiotics-contaminated wastewater. [Display omitted] •Atmospheric-pressure DBD can degrade norfloxacin effectively.•O2-DBD and air-DBD showed higher degradation efficiency than N2-DBD.•N2-DBD with H2O2 improved degradation efficiency significantly.•Both the transient and non-direct PAL effect were observed and distinguished.•Roles of RONS were investigated with degradation pathways and mechanism clarified.
Sprache
Englisch
Identifikatoren
ISSN: 0045-6535
eISSN: 1879-1298
DOI: 10.1016/j.chemosphere.2018.07.035
Titel-ID: cdi_crossref_primary_10_1016_j_chemosphere_2018_07_035

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX