Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 41 von 138
Chemical engineering science, 2020-02, Vol.212, p.115342, Article 115342
2020

Details

Autor(en) / Beteiligte
Titel
MXene interlayer anchored Fe3O4 nanocrystals for ultrafast Li-ion batteries
Ist Teil von
  • Chemical engineering science, 2020-02, Vol.212, p.115342, Article 115342
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2020
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals Complete
Beschreibungen/Notizen
  • •The Fe3O4 nanocrystals are well-distributed between Ti3C2 interlayers.•The 2D confinement effects stabilize the hybrids with high exposure of active sites.•The Fe3O4@Ti3C2 hybrids possess a rapid and stable charge/discharge capability. Balancing energy density and charging rate has been identified as a great challenge for Li-ion batteries (LIBs), which mainly hinges on developing high-performance electrode materials. Herein, we have developed novel Fe3O4@Ti3C2 hybrids, in which the Fe3O4 nanocrystals are well-anchored between Ti3C2 interlayers with the assistance of the synergistic effects of 2D physical confinement and TiOFe covalent bonds. Such structural design can address the dispersion and volume change of nanocrystals during continuous charge/discharge with the enhancement of structural stability and the exposure of abundant active sites for each component. Meantime, the charge polarization caused by the TiOFe covalent bonds greatly accelerates the lithiation reaction kinetics and electrons transfer. These advantages endow the Fe3O4@Ti3C2 hybrids with a very high specific capacity of 1172 mAh g−1 and a rapid charging capability of 366 mAh g−1 in 66 s. A 90% capacity retention can be maintained even through 1000 cycles at 5 A g−1. More impressively, we can also achieve a free-standing electrode by a simple vacuum filtering, exhibiting a high areal capacity of 4.2 mAh cm−2 at 4.4 mg cm−2 almost without sacrificing gravimetric capacity. The present 2D confined strategy provides a new notion to construct satisfactory electrodes for energy storage.
Sprache
Englisch
Identifikatoren
ISSN: 0009-2509
eISSN: 1873-4405
DOI: 10.1016/j.ces.2019.115342
Titel-ID: cdi_crossref_primary_10_1016_j_ces_2019_115342

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX