Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 46141
Coordination chemistry reviews, 2020-08, Vol.416, p.213329, Article 213329
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Chiral AIEgens – Chiral recognition, CPL materials and other chiral applications
Ist Teil von
  • Coordination chemistry reviews, 2020-08, Vol.416, p.213329, Article 213329
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • [Display omitted] •Chiral AIE compounds are recently developed very rapidly.•Chiral AIEgens display excellent chiral recognition, ee analysis and CPL properties.•Review paper about preparation of chiral AIEgens and their applications is scarce. Due to immense potential in using as chemo/biosensors and solid emitters, aggregation-induced emission (AIE) phenomenon is attracting huge interest in scientific community. After endowed with chirality, the resultant chiral AIE luminogens (AIEgen), just like a tiger with added wings, can display more and stronger promising functionalities. Moreover, many classic luminophores can be transformed into AIEgens from notorious aggregation-caused quenching (ACQ) compounds as soon as they are attached with chiral groups. Compared with other chiral fluorescent receptors and chiral emitter, chiral AIEgens have displayed unique and outstanding advantages. Firstly, chiral AIEgen can differentiate two enantiomers of chiral analyte by 1.68 × 104 fold difference and get a chiral magnification up to 2.5 × 103 times due to aggregation. In addition, two enantiomers of up to 18 chiral carboxylic acids can be recognized just by using only one chiral AIEgen receptor and enantiomeric excess (ee) of chiral analytes at uM level can be measured. Furthermore, accurate ee analysis was carried out for the first time from fluorescence wavelength change rather than intensity change of the chiral AIEgen receptor. Therefore, the chiral AIEgens show unprecedentedly high selectivity, high sensitivity, high applicability, and high accuracy. Secondly, in the area of organic circularly polarized luminescence (CPL) materials, the CPL dissymmetry factor (glum) of chiral AIEgen can get to 1.42 that is near to the theoretical value of 2, making a breakthrough progress while the |glum| of previous organic luminophores is generally between 10−5 and 10−2. Furthermore, the highly efficient circularly polarized organic light-emitting diodes (CPOLEDs) are constructed for the first time by chiral AIEgens. Thirdly, chiral AIEgens enable novel display technology under different lighting conditions to be possible. More importantly, due to AIE effect, AIEgens are very beneficial for disclosing the mechanism of chiral transfer and magnification between molecules, which is thought to be the key for evolution of homochirality in natural world and preparation of chiral materials with hierarchical structures. For the above reason, chiral AIEgens have been brought to extensive attention and a large number of research works about them are reported. To take an overall view on chiral AIEgens and facilitate the development of chiral AIEgens, it is necessary to make a full review on the chiral AIEgens. This review covers the following contents: (1) construction of chiral AIEgens including propeller-like chiral AIEgens, chiral AIEgens with optically pure groups, polymer chiral AIEgens and supramolecular chiral AIEgen system; (2) chiral recognition and ee determination of chiral carboxylic acids, chiral amines, α-amino acids, and chiral neutral molecules by chiral AIEgens; (3) performance of chiral AIEgens in circular dichroism (CD), CPL and CPOLEDs; (4) other versatile application researches related to chiral AIEgens.
Sprache
Englisch
Identifikatoren
ISSN: 0010-8545
eISSN: 1873-3840
DOI: 10.1016/j.ccr.2020.213329
Titel-ID: cdi_crossref_primary_10_1016_j_ccr_2020_213329

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX