Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 119823
Biomedical signal processing and control, 2023-09, Vol.86, p.105159, Article 105159
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Convolutional neural network for voice disorders classification using kymograms
Ist Teil von
  • Biomedical signal processing and control, 2023-09, Vol.86, p.105159, Article 105159
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2023
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The diagnosis of voice disorders typically involves examination of laryngoscopic video frames by trained experts. Videokymography (VKG) is a useful clinical tool to represent the glottal dynamics and vibratory patterns as kymographic images. In this work, a 2D Convolutional Neural Network (2D CNN) was used to classify voice disorders from kymograms. High-speed videoendoscopy (HSV) recordings of the ''Benchmark for Automatic Glottis Segmentation'' (BAGLS) database were used as the corpus for the voice disorders. Kymographic images were generated from this corpus. For each classification problem addressed in this work, 90% of the generated kymograms were used to train the network and the remaining 10% was used for testing its classification performance. Classification accuracies of 94.237% and 94.8% were obtained for the two cases of binary classification (healthy vs disorders, and healthy vs muscle tension dysphonia). Ternary classification (healthy vs functional vs organic disorders) of the dataset yielded an accuracy of 93.1%.
Sprache
Englisch
Identifikatoren
ISSN: 1746-8094
eISSN: 1746-8108
DOI: 10.1016/j.bspc.2023.105159
Titel-ID: cdi_crossref_primary_10_1016_j_bspc_2023_105159

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX