Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 14

Details

Autor(en) / Beteiligte
Titel
Interaction of an abiraterone with calf thymus DNA: Investigation with spectroscopic technique and modelling studies
Ist Teil von
  • Bioorganic chemistry, 2020-07, Vol.100, p.103957, Article 103957
Ort / Verlag
United States: Elsevier Inc
Erscheinungsjahr
2020
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • [Display omitted] •Binding interaction of abiraterone with calf thymus DNA (ctDNA) has been studied.•Thermodynamic studies suggest hydrophobic interactions dominates the binding interaction.•Groove binding between dapoxetine and ctDNA was observed.•FTIR and CD spectral studies were conducted to establish any conformational changes in ctDNA.•Molecular docking suggested non-intercalated interaction with the narrow minor groove binding. Binding of toxic ligands to DNA could result in undesirable biological processes, such as carcinogenesis or mutagenesis. Binding mode of Abiraterone (ABR), a steroid drug and calf thymus DNA (ctDNA) was investigated in this study using fluorescence and ultraviolet-visible spectroscopy. The probable prediction of binding and the type of interaction forces involved in the arrangement between ABR and ctDNA were explored through spectroscopic and molecular docking studies. The results indicated that ABR binds to the ctDNA in the minor groove. The binding constants were in the range of 1.35 × 106–0.36 × 106 L mol−1 at the studied temperatures. Fluorescence and spectrophotometric data suggested static quenching between ctDNA and ABR. The endothermic values of thermodynamic parameters ΔH°=−82.84 kJ mol−1; ΔS°=−161 J mol−1K−1 suggested that hydrogen bonding is the main force involved in binding of ABR with ctDNA. In experimental studies, the free binding energy at 298 K was −34.9 kJ mol−1 with the relative binding energy ≈ −29.65 kJ mol−1 of docked structure. The Ksv obtained for ABR-KI was similar to that for ABR- ctDNA -KI demonstrating no protection by ctDNA against quenching effect of KI. Thus, suggesting involvement of groove binding between ABR and ctDNA. No change in the fluorescence intensity of ABR-ctDNA was observed in presence of NaCl. Thus, ruling out the involvement of electrostatic interaction. These studies could serve as new insights in understanding the mechanisms of toxicity, resistance and side effects of ABR.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX