Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 595

Details

Autor(en) / Beteiligte
Titel
Assessment of GPM and SM2RAIN-ASCAT rainfall products over complex terrain in southern Italy
Ist Teil von
  • Atmospheric research, 2018-07, Vol.206, p.64-74
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2018
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals Complete
Beschreibungen/Notizen
  • The assessment of precipitation over land is extremely important for a number of scientific purposes related to the mitigation of natural hazards, climate modelling and prediction, famine and disease monitoring, to cite a few. Due to the difficulties and the cost to maintain ground monitoring networks, i.e., raingauges and meteorological radars, remote sensing is receiving more and more attention in the recent decade(s). However, the accuracy of satellite observations of rainfall should be assessed with ground information as it is affected by a number of factors (topography, vegetation density, land-sea interface). Calabria is a peninsular region in southern Italy characterized by complex topography, dense vegetation and a narrow North-South elongated shape, thus being a very challenging place for rainfall retrieval from remote sensing. In this study, we built a high-quality rainfall datasets from raingauges and meteorological radars for testing three remotely sensed rainfall products: 1) the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement product (IMERG), 2) the SM2RASC product obtained from the application of SM2RAIN (Soil Moisture TO RAIN) algorithm to the Advanced SCATterometer (ASCAT) derived satellite soil moisture data, and 3) a product derived from a simple combination of IMERG and SM2RASC. The assessment of the products is carried out at different rainfall time accumulation (e.g., from 0.5 to 24 h) for a ~2-year period from 10th March 2015, to 31st December 2016. Results show that IMERG has good performance at time resolutions higher than 6 h. At daily time scale, IMERG and SM2RASC show similar results with median correlations, R, ~0.60, and root mean square error, RMSE, ~7.6 mm/day (BIAS is −0.85 and +0.51 mm/day, respectively). The combined product outperforms the parent products (median R > 0.70, RMSE<6.5 mm/day, BIAS -0.07 mm/day). Among the different factors affecting products quality, topographic complexity seems to play the more relevant role, particularly for SM2RASC but also for IMERG. Overall, this study shows that the investigated satellite-based products agree reasonably well with observations notwithstanding the challenging features of the region, and the combination of IMERG and SM2RASC provides a way to overcome their limitations and to produce a higher quality satellite rainfall product. •High-quality in situ rainfall data by merging raingauges and meteorological radars.•Over the complex Calabria region, IMERG and SM2RASC perform good at daily time scale.•The integration of IMERG and SM2RASC shows the best performances.
Sprache
Englisch
Identifikatoren
ISSN: 0169-8095
eISSN: 1873-2895
DOI: 10.1016/j.atmosres.2018.02.019
Titel-ID: cdi_crossref_primary_10_1016_j_atmosres_2018_02_019

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX