Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 21 von 513

Details

Autor(en) / Beteiligte
Titel
Motion characteristics and gait planning methods analysis for the walkable lunar lander to optimize the performances of terrain adaptability
Ist Teil von
  • Aerospace science and technology, 2023-01, Vol.132, p.108030, Article 108030
Ort / Verlag
Elsevier Masson SAS
Erscheinungsjahr
2023
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Lunar environmental adaptability and gait control are significant for developing a walkable lunar lander (WLL). However, gait planning for the WLL is challenging due to the optimization process required for the stable margin sequence. To overcome this concern, this study develops a new Center of Gravity (COG) trajectory planning algorithm appropriate for a WLL that will enhance walking performance. Specifically, our method designs an adaptive back-stepping controller (ABSC) based on the established kinematic model to compensate for the influence of parameter uncertainties on the single-leg motion system. Compared to the classic PID control, our method's motion trajectory accuracy on the joint drive position is improved by 3.2 times. Additionally, various experiments on the prototype device verify the foot's motion trajectory. Furthermore, a new COG trajectory planning algorithm is proposed that combines the Jacobian COG and the centroid of a support polygon, including a foot contact constraint. This strategy effectively balances optimization and search operations, improving the lander's passing ability and stability in complex terrains. Moreover, this work considers the longitudinal stability margin (LSM) method and minimum stability margin of the lander as a sequential optimization problem. Hence, the hierarchical control architecture is established to compensate for the mission and environment changes, improving computational efficiency. Finally, the developed method is applied to the simulation prototype to verify its performance in various environments. The experimental results demonstrate that the proposed method allows the WLL to move in various environments and improves its stability in simulation experiments. At the same time, compared with the foot endpoint trajectory gait control method, our method can improve the walking efficiency by 8.56% and 6.58%, respectively.
Sprache
Englisch
Identifikatoren
ISSN: 1270-9638
eISSN: 1626-3219
DOI: 10.1016/j.ast.2022.108030
Titel-ID: cdi_crossref_primary_10_1016_j_ast_2022_108030

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX