Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 11

Details

Autor(en) / Beteiligte
Titel
Imaging initial formation processes of nanobubbles at the graphite–water interface through high-speed atomic force microscopy
Ist Teil von
  • Applied surface science, 2018-03, Vol.434, p.913-917
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2018
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •An astigmatic HS-AFM was modified to image the formation process of surface nanobubble.•The HS-AFM can image nanobubbles at a scan rate of 100l/s (640μm/s) without damaging them.•The initial nanobubble formation began with unstable flat structures, which later stabilized into cap-shaped structures.•Migration of an unstable structure was captured. The initial formation process of nanobubbles at solid–water interfaces remains unclear because of the limitations of current imaging techniques. To directly observe the formation process, an astigmatic high-speed atomic force microscope (AFM) was modified to enable imaging in the liquid environment. By using a customized cantilever holder, the resonance of small cantilevers was effectively enhanced in water. The proposed high-speed imaging technique yielded highly dynamic quasi-two-dimensional (2D) gas structures (thickness: 20–30 nm) initially at the graphite–water interface. The 2D structures were laterally mobile mainly within certain areas, but occasionally a gas structure might extensively migrate and settle in a new area. The 2D structures were often confined by substrate step edges in one lateral dimension. Eventually, all quasi-2D gas structures were transformed into cap-shaped nanobubbles of higher heights and reduced lateral dimensions. These nanobubbles were immobile and remained stable under continuous AFM imaging. This study demonstrated that nanobubbles could be stably imaged at a scan rate of 100 lines per second (640 μm/s).
Sprache
Englisch
Identifikatoren
ISSN: 0169-4332
eISSN: 1873-5584
DOI: 10.1016/j.apsusc.2017.11.044
Titel-ID: cdi_crossref_primary_10_1016_j_apsusc_2017_11_044

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX