Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Applied energy, 2020-03, Vol.262, p.114535, Article 114535
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Solar Salt – Pushing an old material for energy storage to a new limit
Ist Teil von
  • Applied energy, 2020-03, Vol.262, p.114535, Article 114535
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • [Display omitted] •Thermal stability limit of molten nitrate salts is enhanced from 560 °C to 600 °C.•Operation in a closed storage system increases thermal stability significantly.•Performance of Solar Salt is demonstrated in 100 g-scale.•Quasi-in situ sample analysis is used for proof of concept.•Formation of corrosive impurities is successfully suppressed at 600 °C. The implementation of inexpensive and reliable energy storage technologies is crucial for the decarbonisation of energy intensive industry branches and energy supply. Sensible thermal energy storage (TES) in molten salts is a key technology for storage of heat in the scale of gigawatt hours but currently limited to operating temperatures of 560 °C. Increasing the maximum operating temperature while maintaining thermal stability of the storage medium is one of the main challenges next-Generation TES systems are facing. Extending the upper temperature limit by only 40 °C increases the storage capacity by more than 16% allowing for more compact storage designs and cost savings in the $ million-range for large scale storage units. Here we propose a novel storage technology from a materials point of view that pushes the thermal stability limit of Solar Salt up to 600 °C by simply but effectively sealing the storage unit including the gas system. The concentration of the unstable nitrite ion and of the corrosive oxide ion could be reduced by 16% and 75%, respectively at 600 °C, compared to a salt system with open atmosphere. We present clear evidence of the enhanced thermal stability in long-term, 100 g-scale test campaigns at previously unequalled temperatures. These findings constitute a major advance in the design and engineering of next generation storage systems.
Sprache
Englisch
Identifikatoren
ISSN: 0306-2619
eISSN: 1872-9118
DOI: 10.1016/j.apenergy.2020.114535
Titel-ID: cdi_crossref_primary_10_1016_j_apenergy_2020_114535

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX