Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Active pharmaceutical pollution has become “a new force” of water pollution, and a high-efficiency process is urgently required to remove it. Herein, the CuS/MIL-Fe heterojunction catalyst with high-speed electron transfer channel is designed by adjusting the energy band and regulating the direction of electron transfer, which exhibits excellent acetaminophen (APAP) removal ability in photo-Fenton reaction. The charge transfer pathway of heterojunction is identified by X-ray photoelectron spectroscopy analysis and density functional theory (DFT) calculation, which provides the evidence of electron transfer from CuS to MIL-101(Fe) at the heterointerface. Meanwhile, kelvin probe force microscopy measurement indicates that photogenerated electrons can be easily transported through the CuS/MIL-Fe interface. The close contact interface and high charge transfer conductivity realize the synergistic effect of photo and Fenton degradation by establishing high-speed electron transfer channel. This study will open up a new insight into the application of heterojunction photo-Fenton technology in environmental remediation.
[Display omitted]
•CuS/MIL-Fe with heterojunction interface exhibits excellent photo-Fenton activity on APAP degradation.•Built-in electric field in CuS/MIL-Fe promotes charge separation confirmed by KPFM.•The interface transmission in CuS/MIL-Fe accelerates H2O2 decomposition by enhancing the Fe(III)/Fe(II) cycle.•The synergistic effect of photo and Fenton degradation is achieved by electron transfer channel constructed in CuS/MIL-Fe.