Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 501

Details

Autor(en) / Beteiligte
Titel
Synthesis and characterizations of metal-free Semiconductor/MOFs with good stability and high photocatalytic activity for H2 evolution: A novel Z-Scheme heterostructured photocatalyst formed by covalent bonds
Ist Teil von
  • Applied catalysis. B, Environmental, 2018-01, Vol.220, p.607-614
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2018
Quelle
Elsevier ScienceDirect Journals
Beschreibungen/Notizen
  • [Display omitted] •A strategy was proposed to prepare Z-scheme catalyst of metal-free semiconductor/MOFs formed by covalent bonds.•The Z-scheme catalyst shows excellent photocatalytic performance for H2 evolution from water splitting.•The role of benzoic acid in the Z-scheme heterostructured catalyst was well investigated.•A mechanism was put forward to well explain the improved photocatalytic performance of the Z-scheme catalyst. To solve serious energy and environmental crises caused by rapid industrial development, the formation of Z-scheme heterostructured photocatalysts is a promising approach for efficient and scalable H2 production from water splitting due to wide absorption range, high charge-separation efficiency and strong redox ability of the Z-scheme heterostructured photocatalysts. In this study, we combined the MOFs of NH2-MIL-125(Ti) with g-C3N4 functionalized by benzoic acid (CFB) to synthesize a novel composite catalyst of CFB/NH2-MIL-125(Ti) (CFBM) by covalent bonds for the first time. The benzoic acid in the CFBM acts as electron mediator to well separate photogenerated electrons and holes, leading to excellent photocatalytic performance of photocatalytic hydrogen generation from water splitting under visible light irradiation. Experimental results show that the H2 production rate of the 10CFBM is 1.123mmol·h−1·g−1, which is about 6 times of the NH2-MIL-125(Ti). Meanwhile, the simple physical mixture of NH2-MIL-125(Ti) with 10wt% g-C3N4 and the 10wt%g-C3N4/MOFs heterostructured catalyst all show much smaller H2 evolution rate and worse stability than that of the 10CFBM. Finally, we proposed a possible mechanism to well explain the improved photocatalytic performance of the Z-scheme photocatalytic system based on the results of different characterizations. The present work gives a good example to develop a novel Z-scheme heterostructured system with good stability and high photocatalytic activity for H2 evolution and puts forward a new synthetic strategy to prepare metal-free semiconductor/MOFs formed by covalent bonds.
Sprache
Englisch
Identifikatoren
ISSN: 0926-3373
eISSN: 1873-3883
DOI: 10.1016/j.apcatb.2017.08.086
Titel-ID: cdi_crossref_primary_10_1016_j_apcatb_2017_08_086

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX