Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 3 von 12

Details

Autor(en) / Beteiligte
Titel
Hydrogenolysis of glycerol over supported bimetallic Ni/Cu catalysts with and without external hydrogen addition in a fixed-bed flow reactor
Ist Teil von
  • Applied catalysis. A, General, 2018-08, Vol.564, p.172-182
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2018
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • [Display omitted] •Ni/Cu/TiO2 is effective for glycerol hydrogenolysis without external hydrogen supply.•Ni/Cu/TiO2 showed the high Cu dispersion and Ni/Cu atomic ratio on catalyst surface.•Metal active sites of catalyst play a significant role on glycerol hydrogenolysis.•Ni/Cu/TiO2 catalyst undergoes serious deactivation after certain time of running.•Deactivation is related to metal leaching, sintering and presence of adsorbed species. The role of high hydrogen pressure in the hydrogenolysis of glycerol to 1,2-propanediol has been studied extensively. Given the peculiar properties of hydrogen such as its inflammability and explosibility, the hydrogenolysis of glycerol without external hydrogen addition seems a more advantageous option. This study focuses on the conversion of glycerol to 1,2-propanediol over different supported bimetallic Ni/Cu catalysts in a fixed-bed flow reactor, using in situ hydrogen production and external hydrogen. Among the catalysts prepared, Ni/Cu/TiO2 catalyst was observed to efficiently catalyze the hydrogenolysis of glycerol to 1,2-propanediol under N2 pressure using 2-propanol as hydrogen source. This was due to the high Cu dispersion and Ni/Cu atomic ratio on the catalyst surface. However, the experimental results indicated that the effect of catalyst acid sites on glycerol hydrogenolysis was more noticeable when the reaction was performed under H2 pressure. The metal active sites of the catalyst played a significant role in the hydrogen production and also affected the glycerol hydrogenolysis with hydrogen produced from 2-propanol catalytic transfer hydrogenation (CTH) and glycerol aqueous phase reforming (APR). The stability study revealed that the Ni/Cu/TiO2 catalyst underwent serious deactivation during the hydrogenolysis of glycerol. The characterization results showed that the metal leaching and metal particles sintering were responsible for the catalyst deactivation when the glycerol hydrogenolysis was conducted using water as a solvent. However, the activity loss for reactions performed using 2-propanol as a solvent was mainly related to the metal particles sintering and the presence of adsorbed species on the catalyst surface.
Sprache
Englisch
Identifikatoren
ISSN: 0926-860X
eISSN: 1873-3875
DOI: 10.1016/j.apcata.2018.07.029
Titel-ID: cdi_crossref_primary_10_1016_j_apcata_2018_07_029

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX