Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 111
Proceedings of the Combustion Institute, 2000, Vol.28 (1), p.447-454
2000

Details

Autor(en) / Beteiligte
Titel
Radiation and nitric oxide formation in turbulent non-premixed jet flames
Ist Teil von
  • Proceedings of the Combustion Institute, 2000, Vol.28 (1), p.447-454
Ort / Verlag
Elsevier Inc
Erscheinungsjahr
2000
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals Complete
Beschreibungen/Notizen
  • Radiative heat transfer has a significant effect on nitric oxide (NO) formation in turbulent non-premixed flames. Consequently, predictive models of turbulent non-premixed flames must include an accurate radiation submodel. To investigate the importance of radiation submodels in modeling NO formation, multiscalar measurements of temperature and species were coupled with radiation measurements in a series of turbulent non-premixed jet flames. A range of fuel mixtures were considered including H 2, H 2/He, CO/H 2/N 2, CH 4/H 2/N 2, and partially premixed CH 4/air. This group of flames represents a range of complexity with regard to NO formation and is currently the subject of multiple modeling efforts. Measurements of radiant fraction, temperature, and NO mass fraction have been compared with previously obtained modeling results for the H 2, H 2/He, and CH 4/air flames. The results show that an emission-only radiation submodel is adequate for modeling the hydrogen flames but not the CH 4/air flames. In one CH 4/air flame, the emission-only computations overpredict the radiant heat loss by a factor of 2.5. A comparison of adiabatic and radiative computations shows that the inclusion of radiative losses can reduce the predicted peak NO levels by as much as 57%. An accurate radiation submodel for hydrocarbon flames must account for radiative absorption. Spectrally resolved radiation calculations show that absorption by CO 2 near 4.3 μm is primarily responsible for the increased optical density of the hydrocarbon flames. The series of turbulent jet flames considered here contains a range of CO 2 levels and provide a basis for developing a realistic radiation model that incorporates absorption by CO 2.
Sprache
Englisch
Identifikatoren
ISSN: 1540-7489
eISSN: 1873-2704
DOI: 10.1016/S0082-0784(00)80242-8
Titel-ID: cdi_crossref_primary_10_1016_S0082_0784_00_80242_8
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX