Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Increased ultraviolet radiations intruding on the earth pose a serious threat to the unadapted plants. Due to the ecological and economic significance of mat rush (Juncus effusus L.), an in vitro experiment was conducted to unveil the toxic effects of ultraviolet radiation (UV-C) on its physiology and ultrastructure. The basal culm segments of plant were used for in vitro treatments of UV-C with different exposure times (15, 30 and 45 min). The treated segments were first transferred to 1/2 strength MS media and then shifted to soil-perlite mixture for further growth. With increasing exposure time to UV-C, there was significant reduction in plant growth and biomass, and increased activities of antioxidant enzymes. Physiological and ultrastructural alterations were observed in the shoots of UV-treated plants. These plants exhibited significant reduction in chlorophyll contents and noticeable modifications at the ultra-cellular levels. Cell and chloroplast size reduced greatly, and there was appearance of higher amounts of plastoglobuli in chloroplasts resulting in disruption of thylakoid integrity. The functional and ultrastructural alterations in the stressed plants suggest a potential hazard of UV-C radiation on this aquatic flora and thus the ecosystem. The study further explores that UV-C radiations trigger these modifications mainly by damaging the chloroplast.