Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 83

Details

Autor(en) / Beteiligte
Titel
Fault detection based on squirrel search algorithm and support vector data description for industrial processes
Ist Teil von
  • Soft computing (Berlin, Germany), 2022-12, Vol.26 (24), p.13639-13650
Ort / Verlag
Berlin/Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2022
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • This paper proposes a novel fault detection system by the combination of Support Vector Data Description and Squirrel Search Algorithm. This approach is capable to deal with processes or machines where the number of fault observations is small or not even available for training phase. In this work the use of classic Support Vector Data Description as well as its fast version with two kernel functions is proposed. The experimental results showed that the proposed system exhibits suitable capabilities for fault detection in complex industrial processes such as the one presented in this research. Moreover, a nonparametric statistical analysis is also included in order to compare the considered strategies and enhance the efficiency of the presented approach. Finally, a comparison with genetic algorithm approach and the one-class classifier based on support vectors is carried out which shows that the proposed algorithm outperforms traditional techniques.
Sprache
Englisch
Identifikatoren
ISSN: 1432-7643
eISSN: 1433-7479
DOI: 10.1007/s00500-022-07337-9
Titel-ID: cdi_crossref_primary_10_1007_s00500_022_07337_9

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX