Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 67
Applied physics. A, Materials science & processing, 2013-11, Vol.113 (2), p.397-411
2013
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Numerical simulation of ultrafast expansion as the driving mechanism for confined laser ablation with ultra-short laser pulses
Ist Teil von
  • Applied physics. A, Materials science & processing, 2013-11, Vol.113 (2), p.397-411
Ort / Verlag
Berlin/Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2013
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Recently, a so-called “directly induced” laser ablation effect has been reported, where an ultra-short laser pulse (660 fs and 1053 nm) irradiates a thin Mo film through a glass substrate, resulting in a “lift-off” of the irradiated layer in form of a thin, solid, cylindrical fragment. This effect provides a new and very energy-efficient selective structuring process for the Mo back electrode in thin-film solar cell production. To understand the underlying physical mechanisms, a 3D axisymmetric finite element model was created and numerically solved. The model is verified by a direct comparison of experimental and numerical results. It includes volume absorption of the laser pulse, heat diffusion in the electron gas and the lattice, thermal expansion of the solid phase and further volume expansion from phase transition to fluid and gas, and finally the mechanical motion of the layer caused by the resulting stress wave and the interaction with the substrate. The simulation revealed that irradiation of the molybdenum layer with an ultra-short pulse causes a rapid acceleration in the direction of the surface normal within a time frame of a hundred picoseconds to a peak velocity of about 100 m/s. The molybdenum layer continues to move as an oscillating membrane, and finally forms a dome after about 100 ns. The calculated strain at the edges of the dome exceeds the tensile stress limit at fluences that initiate the “lift-off” in experimental investigations. In addition, the simulation reveals that the driving mechanism of the “lift-off” is the ultrafast expansion of the interface layer and not the generated gas pressure.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX