Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 11

Details

Autor(en) / Beteiligte
Titel
Assessing the Potential of Inversion Layer Solar Cells Based on Highly Charged Dielectric Nanolayers
Ist Teil von
  • Physica status solidi. PSS-RRL. Rapid research letters, 2021-12, Vol.15 (12), p.n/a
Erscheinungsjahr
2021
Link zum Volltext
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
  • The production and performance of p‐type inversion layer (IL) Si solar cells, manufactured with an ion‐injection technique that produces a highly charged dielectric nanolayer, are investigated. It is demonstrated that the field‐induced electron layer underneath the dielectric can reach a dark sheet resistance of 0.95 kΩ sq−1 on a 1 Ω cm n‐type substrate, lower than any previously reported. In addition, it is shown that the implied open‐circuit voltage of a p‐type IL cell precursor with a highly charged dielectric is equivalent to that of a cell with a phosphorous emitter. In the cell precursor, light‐beam‐induced current measurements are performed, and the uniformity and performance of the IL is demonstrated. Finally, simulations are used to explain the physical characteristics of the interface leading to extremely low sheet resistances, and to assess the efficiency potential of IL cells. IL cells are predicted to reach an efficiency of 24.5%, and 24.8% on 5/10 Ω cm substrates, by replacing the phosphorous emitter with a simpler manufacturing process. This requires a charge density of beyond 2 × 1013 cm−2, as is demonstrated here. Moreover, IL cells perform even better at higher charge densities and when negative charge is optimized at the rear dielectric. The production and performance of inversion layer silicon solar cells is investigated. An ion‐injection technique is used to obtain highly charged dielectric nanolayers. The charges of ≈2 × 1013 cm−2 are demonstrated. An efficiency of 24.8% on 10 Ω cm substrates is predicted. Better performance is expected with enhanced passivation, higher charge densities, and optimal negative charge at rear dielectric.
Sprache
Englisch
Identifikatoren
ISSN: 1862-6254
eISSN: 1862-6270
DOI: 10.1002/pssr.202100129
Titel-ID: cdi_crossref_primary_10_1002_pssr_202100129

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX