UNIVERSI
TÄ
TS-
BIBLIOTHEK
P
ADERBORN
Anmelden
Menü
Menü
Start
Hilfe
Blog
Weitere Dienste
Neuerwerbungslisten
Fachsystematik Bücher
Erwerbungsvorschlag
Bestellung aus dem Magazin
Fernleihe
Einstellungen
Sprache
Deutsch
Deutsch
Englisch
Farbschema
Hell
Dunkel
Automatisch
Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist
gegebenenfalls
nur via VPN oder Shibboleth (DFN-AAI) möglich.
mehr Informationen...
Universitätsbibliothek
Katalog
Suche
Details
Zur Ergebnisliste
Ergebnis 11 von 46
Datensatz exportieren als...
BibTeX
Model reduction for dynamical systems with quadratic output
International journal for numerical methods in engineering, 2012-07, Vol.91 (3), p.229-248
Van Beeumen, R.
Van Nimmen, K.
Lombaert, G.
Meerbergen, K.
2012
Volltextzugriff (PDF)
Details
Autor(en) / Beteiligte
Van Beeumen, R.
Van Nimmen, K.
Lombaert, G.
Meerbergen, K.
Titel
Model reduction for dynamical systems with quadratic output
Ist Teil von
International journal for numerical methods in engineering, 2012-07, Vol.91 (3), p.229-248
Ort / Verlag
Chichester, UK: John Wiley & Sons, Ltd
Erscheinungsjahr
2012
Quelle
Wiley Online Library - AutoHoldings Journals
Beschreibungen/Notizen
SUMMARY Finite element models for structures and vibrations often lead to second order dynamical systems with large sparse matrices. For large‐scale finite element models, the computation of the frequency response function and the structural response to dynamic loads may present a considerable computational cost. Padé via Krylov methods are widely used and are appreciated projection‐based model reduction techniques for linear dynamical systems with linear output. This paper extends the framework of the Krylov methods to systems with a quadratic output arising in linear quadratic optimal control or random vibration problems. Three different two‐sided model reduction approaches are formulated based on the Krylov methods. For all methods, the control (or right) Krylov space is the same. The difference between the approaches lies, thus, in the choice of the observation (or left) Krylov space. The algorithms and theory are developed for the particularly important case of structural damping. We also give numerical examples for large‐scale systems corresponding to the forced vibration of a simply supported plate and of an existing footbridge. In this case, a block form of the Padé via Krylov method is used. Copyright © 2012 John Wiley & Sons, Ltd.
Sprache
Englisch
Identifikatoren
ISSN: 0029-5981
eISSN: 1097-0207
DOI: 10.1002/nme.4255
Titel-ID: cdi_crossref_primary_10_1002_nme_4255
Format
–
Schlagworte
Applied sciences
,
Arnoldi method
,
Bridges
,
Buildings. Public works
,
Exact sciences and technology
,
Fundamental areas of phenomenology (including applications)
,
Mathematics
,
Methods of scientific computing (including symbolic computation, algebraic computation)
,
modal superposition
,
model reduction
,
Numerical analysis. Scientific computation
,
Physics
,
quadratic output
,
recycling
,
Sciences and techniques of general use
,
Solid mechanics
,
Structural and continuum mechanics
,
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von
bX