Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 82
Advanced theory and simulations, 2020-12, Vol.3 (12), p.n/a
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Molecular Dynamics Simulations of Molten Magnesium Chloride Using Machine‐Learning‐Based Deep Potential
Ist Teil von
  • Advanced theory and simulations, 2020-12, Vol.3 (12), p.n/a
Erscheinungsjahr
2020
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
  • In previous work, molten magnesium chloride has been investigated using first‐principles molecular dynamics (FPMD) simulations based on density functional theory (DFT). However, such simulations are computationally intensive and therefore are restricted in terms of simulated size and time. In this work, a machine learning‐based deep potential (DP) is trained to accelerate the molecular dynamics simulation of molten magnesium chloride. The trained DP can accurately describe the energies and forces with the prediction errors in energy and force being 1.76 × 10−3 eV/atom and 4.76 × 10−2 eV Å−1, respectively. Applying the deep potential molecular dynamics (DPMD) approach, simulations can be performed with more than 1000 atoms, which is infeasible for FPMD simulations. Additionally, the partial radial distribution functions, angle distribution functions, densities, and self‐diffusion coefficients predicted by DPMD simulations are also in reasonable agreement with FPMD or experimental results. This work shows that the DP enables higher efficiency and similar accuracy relative to DFT, exhibiting a bright application prospect in modeling molten salt systems. Machine‐learning‐based deep potential (DP) can provide results with accuracy that is comparable to density functional theory (DFT) and efficiency that is similar to empirical potentials. DP can be used to study a number of physical properties that can only be calculated accurately in a larger system or on a longer timescale, which is outside the capability of DFT.
Sprache
Englisch
Identifikatoren
ISSN: 2513-0390
eISSN: 2513-0390
DOI: 10.1002/adts.202000180
Titel-ID: cdi_crossref_primary_10_1002_adts_202000180

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX