Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 26 von 57

Details

Autor(en) / Beteiligte
Titel
High‐Performance Internal Ion‐Gated Organic Electrochemical Transistors for High‐Frequency Bioimpedance Analysis
Ist Teil von
  • Advanced materials technologies, 2023-02, Vol.8 (4), p.n/a
Erscheinungsjahr
2023
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Internal ion‐gated organic electrochemical transistor (IGT) demonstrates volume‐dependent transconductance with the unprecedented advantages of high speed and self‐(de)doping capability among ion‐based transistors. The novel characteristics have albeit rendered IGT a promising platform for integrated bioelectronics, its potential in high‐frequency applications has yet been fully harnessed. Moreover, a study from a material's point of view is especially needed for this recently emerged platform as the necessity of maintaining the internal ion reservoir has posed difficulties in processing hydrated poly(3,4‐ethylenedioxythiophene) doped with poly(styrene sulphonate) (PEDOT:PSS) with electronically favorable morphologies. Herein, a comprehensive investigation of the structural and functional properties of ion‐embedded PEDOT:PSS modified by different annealing temperatures is performed and correlated to the IGT performance. A short‐time high‐temperature annealing treatment is found effective in facilitating the formation of compact microstructures without significantly influencing film hydration. The structural improvement enhances the film's conductivity and hole mobility, with the corresponding IGTs exhibiting higher gain, higher conductance, and high cut‐off frequency consistently in a batch. This study also successfully demonstrates the first use of electrochemical transistors like IGTs in high‐frequency applications through proof‐of‐concept experiments simulating fluid estimation in 50 kHz bioimpedance analysis. This work contributes to the development of high‐performance IGTs for extensive biological applications. By tuning annealing temperature, internal ion‐gated organic electrochemical transistors (IGT) can be optimized to demonstrate high transconductance and high speed. Re‐arrangement of polymer chains into structures favorable for hole conduction is attributed to enhanced crystallization and partial water removal of ion‐embedded conducting polymer. The as‐optimized IGT demonstrates its potential in high‐frequency applications, i.e. 50 kHz fluid assessment for dialysis management.
Sprache
Englisch
Identifikatoren
ISSN: 2365-709X
eISSN: 2365-709X
DOI: 10.1002/admt.202201116
Titel-ID: cdi_crossref_primary_10_1002_admt_202201116

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX