Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Human–machine interface requires various sensors for communication, manufacturing and environmental control, and health and safety monitoring. Capacitive sensors have been used to detect touch, distance, geometry, electric property, and environmental parameters. However, highly sensitive proximity detection with a small form factor has always been a challenge. This paper presents a capacitive sensor composed of a nanostructured electrode array for contact and noncontact detection. In the sensor configuration, the nanostructured electrode is made of high aspect ratio cellulose fibers embedded with carbon nanotubes. The complementary electrode is designed to be smaller in surface area for high sensitivity. Based on the analysis, the unique sensing mechanism is shown to enhance the proximity sensitivity for target detection. A pair of asymmetrically designed electrodes are characterized and compared with the traditional symmetric electrodes for proximity and contact detection of human hands. The sensor performance is also characterized for detecting water mass in glass and metal cups. In the end, a smart pad that can recognize human gestures, gait, and water mass with unprecedented sensitivity is demonstrated.
Ultrasensitive capacitive sensors composed of nanostructured fibrous electrodes are demonstrated for human–machine interface and environmental monitoring.