Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
SEMI-SUPERVISED RADIO TRANSMITTER CLASSIFICATION BASED ON ELASTIC SPARSITY REGULARIZED SVM1
Ist Teil von
电子科学学刊:英文版, 2012, Vol.29 (6), p.501-508
Erscheinungsjahr
2012
Beschreibungen/Notizen
Non-collaborative radio transmitter recognition is a significant but challenging issue, since it is hard or costly to obtain labeled training data samples. In order to make effective use of the unlabeled samples which can be obtained much easier, a novel semi-supervised classification method named Elastic Sparsity Regularized Support Vector Machine (ESRSVM) is proposed for radio transmitter classification. ESRSVM first constructs an elastic-net graph over data samples to capture the robust and natural discriminating information and then incorporate the information into the manifold learning framework by an elastic sparsity regularization term. Experimental results on 10 GMSK modulated Automatic Identification System radios and 15 FM walkie-talkie radios show that ESRSVM achieves obviously better performance than KNN and SVM, which use only labeled samples for classification, and also outperforms semi-supervised classifier LapSVM based on manifold regu- larization.
Sprache
Englisch
Identifikatoren
ISSN: 0217-9822
eISSN: 1993-0615
Titel-ID: cdi_chongqing_primary_43869861
Format
–
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von bX