Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 27019

Details

Autor(en) / Beteiligte
Titel
Improving Classifier Generalization: Real-Time Machine Learning Based Applications
Auflage
1
Ort / Verlag
Singapore: Springer
Erscheinungsjahr
2022
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • This book elaborately discusses techniques commonly used to improve generalization performance in classification approaches. The contents highlight methods to improve classification performance in numerous case studies: ranging from datasets of UCI repository to predictive maintenance problems and cancer classification problems. The book specifically provides a detailed tutorial on how to approach time-series classification problems and discusses two real time case studies on condition monitoring. In addition to describing the various aspects a data scientist must consider before finalizing their approach to a classification problem and reviewing the state of the art for improving classification generalization performance, it also discusses in detail the authors own contributions to the field, including MVPC - a classifier with very low VC dimension, a graphical indices based framework for reliable predictive maintenance and a novel general-purpose membership functions for Fuzzy Support Vector Machine which provides state of the art performance with noisy datasets, and a novel scheme to introduce deep learning in Fuzzy Rule based classifiers (FRCs). This volume will serve as a useful reference for researchers and students working on machine learning, health monitoring, predictive maintenance, time-series analysis, gene-expression data classification. 
Sprache
Englisch
Identifikatoren
ISBN: 9811950725, 9789811950728
ISSN: 1860-949X
eISSN: 1860-9503
DOI: 10.1007/978-981-19-5073-5
Titel-ID: cdi_askewsholts_vlebooks_9789811950735

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX