Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 257

Details

Autor(en) / Beteiligte
Titel
Deep Learning in Computational Mechanics: An Introductory Course
Auflage
1st ed. 2021.
Ort / Verlag
Cham: Springer International Publishing AG
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • This book provides a first course on deep learning in computational mechanics. The book starts with a short introduction to machine learning's fundamental concepts before neural networks are explained thoroughly. It then provides an overview of current topics in physics and engineering, setting the stage for the book's main topics: physics-informed neural networks and the deep energy method.The idea of the book is to provide the basic concepts in a mathematically sound manner and yet to stay as simple as possible. To achieve this goal, mostly one-dimensional examples are investigated, such as approximating functions by neural networks or the simulation of the temperature's evolution in a one-dimensional bar.Each chapter contains examples and exercises which are either solved analytically or in PyTorch, an open-source machine learning framework for python.  
Sprache
Englisch
Identifikatoren
ISBN: 9783030765866, 3030765865
ISSN: 1860-949X
eISSN: 1860-9503
DOI: 10.1007/978-3-030-76587-3
Titel-ID: cdi_askewsholts_vlebooks_9783030765873

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX